Tuesday, February 14, 2023

Basic about Fire sprinkler head

 Basic about Fire sprinkler head

A fire sprinkler or sprinkler head is the component of a fire sprinkler system that discharges water when the effects of a fire have been detected, such as when a predetermined temperature has been exceeded. Fire sprinklers are extensively used worldwide, with over 40 million sprinkler heads fitted each year.

Sprinkler heads feature a glass bulb filled with a glycerin-based liquid. This liquid expands when it comes in contact with air heated to between 135 and 165 degrees. When the liquid expands, it shatters its glass confines and the sprinkler head activates.

Sprinkler heads must be a maximum of 12-15 feet apart, depending on the hazard rating of the space (it ranges from Light Hazard to Extra Hazard 1&2), and at least half that distance from the nearest walls (typically 7.5 feet away).

Orifice (Opening)

The orifice varies in size, but has a major impact on the sprinkler's k-factor which ultimately governs the sprinkler's relationship between flow and pressure. Opening sizes vary fairly dramatically but in general are not a major driver for sprinkler selection.

Threading
The nominal threading sizes range in quarter-inch increments from 1/2-inch to 1-1/4-inch (although some dry pendent shafts do have 1-1/2-inch threads). Thread size of sprinklers can be gathered in the field simply by measuring the diameter of the thread shaft. Sprinklers with a k-factor greater than 5.6 are no longer allowed to have thread sizes of 1/2-inch (NFPA 13 2002-2016 Section 8.3.5).

Plug
The plug retains the water (and pressure) within the sprinkler and pipe network. Breakage of the liquid-filled glass bulb results in the release of the plug, and thereafter the water.

Sealed Liquid-Filled Glass Bulb
Modern commercial sprinklers mostly rely on the colored glass bulb as the thermal sensor in the fire sprinkler, but other types are still frequent as well. Color of the liquid within the bulb indicate the listed activation temperature of the sprinkler (and can be found in NFPA 13 2002-2016 Table 6.2.5.1).

Frame & Deflector
The frame can have many finishes, of which some of the more common are listed above. The deflector offers the basic premise of the fire sprinkler - which is to distribute water in a specific pattern to best combat a fire hazard within an enclosure. Deflectors vary depending upon the style of the sprinkler and work to achieve different objectives. A residential pendent, for example, throws water with greater emphasis to the walls and ceiling where hazards are more commonly present in residential occupancies.

Wednesday, February 1, 2023

BLOWING OFF EXTINGUISHING GAS CAN AFFECT HARD DISKS

BLOWING OFF EXTINGUISHING GAS CAN AFFECT HARD DISKS 

Extinguishing gas installations have been installed on a large scale in DVR, NVR, NAS, Graphic Workstation, computer, IT, data storage rooms over the past decades. The design of these systems and components meet the relevant product and system standards, such as EN, ISO, and NFPA. These installations also meet national laws and regulations and / or insurance requirements. Recurring inspections and maintenance requirements of the aforementioned standards ensure the reliable operation of these fire extinguishing systems throughout their lifespan. The purpose of a fire extinguishing system in such a room is to quickly detect and extinguish a fire. The derived objective is to cause the least possible collateral damage and / or downtime. This ensures continuity and protects data and equipment against damage.

In recent years, some failures of hard disks have been known. Disturbances that may result from blowing off extinguishing gas in the event of a fire or test in the room concerned. This concerns the corresponding high-frequency noise level. The problems described relate only to high-pressure systems: Inergas, Argonite, Inergen, etc. with and without I-Flow technology.

Tests conducted under the guidance of the European Association in collaboration with test laboratories and suppliers of hard disks, learn that:

  • A sound pressure level approaching 110 decibels can interrupt the operation of a hard disk and lead to permanent failure of the hard disk;
  • The sound pressure during the extinguishing of the extinguishing gas when the fire extinguishing system or acoustic sources (alarms) are activated can influence the hard disks;
  • Although the phenomenon occurs with all brands of hard disks, there are differences in the extent of the effect on the different types of hard disks. “Enterprise class” hard drives were less sensitive to these tests than the “near-line-class” hard drives.

THE FOLLOWING WAS NOTED WITH REGARD TO THE EFFECTS:

  • The use of a damper-blow nozzle combination has positive influences;
  • The damper-blow nozzle combination should not be aimed at the hard disk;
  • The distance between the silencer nozzle assembly and the hard disk must be as large as possible, as permitted within the applicable standards;
  • Reducing noise levels of alarms has positive influences. Mechanical-pneumatic alarms are more often the cause than electronic alarms. Mechanical-pneumatic alarms are not used in the Netherlands for extinguishing gas systems in IT rooms (in contrast to Germany where this is frequently the case);
  • Installing discs in soundproof enclosures reduces observed effects;
  • Use patented software to minimize the tolerance of hard drives.

WHAT NOW:

If there are concerns about the vulnerability of the hard disk, we recommend a controlled ‘shut down’ where the hard disks are first switched off before the extinguishing gas system is activated and with certain functional tests. The latest generation of Solid State Drives (SSDs) are, due to the lack of mechanical components, far less susceptible to external influences.

In addition, the placement of dampers on the blow nozzle or a damper-blow nozzle combination is recommended. In this case, the manufacturer issues a substantiated guarantee of the occurring sound pressure at the nozzle during an extinguishing. If there are very outdated systems or more expensive maintenance moments (such as inspections of cylinders), replacement with modern systems can also be a good alternative.

We like to think along with you to see the possibilities in your situation. Please contact our Service department by email ssaintegrate@gmail.com. Of course you can also contact your own account manager, contact person or project manager.